
CPS311 Lecture: CPU Building Blocks

Last revised July 12, 2021
Objectives:

1. To introduce the basic building blocks of more complex systems that can be 
built from gates and flip-flops: adder, decoder. mux, register, shifter

2. To show how these can be combined into multi-bit units as part of the ALU

 Materials: 

1. Circuit Sandbox and demonstration circuits 4 bit adder, decoder with enables. 
Multiplexer, register with enables single bit, 4 bit Register, shl, shl2, shr, ashr

2. Projectables

I. More Complex Building Blocks

A. The individual gates and flip-flops we have been talking about can be 
combined to produce larger building blocks used at the microarchitecture 
level of design.

B. The ALU part of the CPU, in particular, is largely composed of three basic 
kinds of building blocks, together with a few individual gates and 
combinations of gates.

1. Adders

2. Decoders

3. Multiplexers

4. Registers

5. Shifters
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II. Full Adders

A. All four of the basic arithmetic operations - addition, subtraction, 
multiplication and division - make use of addition in their implementation.

1. Subtraction is simply adding the negated subtrahend - e.g. A+B is 
implemented as A + (-B).  (We will see later an easy way to negate a 
binary integer). 

2. Multiplication is implemented by adding partial products, similar to the 
way you learned to do multiplication in elementary school: 
 
   123  
x  345  
------  
   615     <- partial products  
  492  
 369  
------  
42435  
 
PROJECT 

a) Decimal multiplication requires using a 10 x 10 multiplication table 
for the digits, which you probably memorized in elementary school.  
Binary multiplication is much easier, because the only possible digits 
are 0 and 1, and multiplication by these is trivial!

b) Later in the course we will look at a hardware multiplication algorithm 
and hardware implementation.
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3. In similar fashion, division is implemented using trial subtraction, similar 
to the way you learned to do it in elementary school. 
 
        345  
123 | 42435  
     -369  
     ----  
       553  
      -492  
      ----  
        615  
       -615  
       ----  
          0  
 
PROJECT 

a) But again, in decimal trial subtraction involves considering several 
different products of the divisor (e.g. in this case 1 x 123, 2 x 123, 3 x 
123, 4 x 123) and choosing the largest one that "works"  In binary, all 
that is needed is a simple comparison and then you either subtract the 
divisor or 0 at each step.

b) Again, you will see a binary approach to doing this later in the course.

4. So all we need to be able to do is to perform addition in binary and the 
other operations can also be realized.

B. Now consider the task of adding two one bit numbers.  Recall that the result 
is both a sum and a carry, since in binary 1 + 1 (arithmetic +, not or!) is 0 
with a carry of 1.  This yields a two-output truth table: 
 
A B  ∑ C  
0 0 |  0 0  
0 1 |  1 0  
1 0 |  1 0  
1 1 |  0 1  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Which corresponds to the boolean equations 
 
∑ = A ⊕ B 
C = A • B 
 
PROJECT 
 
Which can be easily implemented using an XOR gate and an AND gate.

C. Of course, we need to be able to add numbers with more than one bit!  To do 
this, we need to consider the possibility - for each bit - that it gets a carry 
from the bit to its right.  Thus, the truth table we need involves a carry-in 
input as well, so we get (written in a non-standard ordering of the inputs to 
make the equation more obvious) 
 
A B Cin ∑ Cout  
0 0 0  | 0 0  
0 1 0  | 1 0  
1 0 0  | 1 0  
1 1 0  | 0 1  
0 0 1  | 1 0  
0 1 1  | 0 1  
1 0 1  | 0 1  
1 1 1  | 1 1  
 
Which corresponds to the equations 
 
∑ = A ⊕ B ⊕ Cin 
Cout = A • B + (A or B) • Cin 

 

PROJECT

1. This could be realized by using two XOR gates, two AND gates, and two 
OR gates.  

2. However, by sharing one XOR gate between both the sum and carry out 
equations, this could be simplified to  
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∑ = A ⊕ B ⊕ Cin 
Cout = A • B + (A ⊕ B) • Cin 

 

which only needs one OR gate 
 
PROJECT

3. This yields the following circuit: 

 

 

 
 
PROJECT 
 
which is known as a full adder (an adder for two bits without carry is 
known as a half adder).

4. as we noted earlier, it has the following special symbol: 
 

 
PROJECT

A
B
Cin

Cout
∑
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D. Any number of full adders can be connected to produce a multi-bit adder.  
For example, this is an adder for two 4-bit numbers using 4 full adders 
connected in ripple-carry fashion. 
 

 
 
PROJECT

1. DEMO with Circuit Sandbox (file 4 Bit adder) 

2. As we noted earlier, a full adder can take a long time to propagate a carry 
with certain inputs, so in practice a more efficient way of connecting the 
carries is used - e.g. a technique known as carry-lookahead).  (This is 
discussed in the remainder of §5.2.1 not assigned) 
 
DEMO Delay with A = 0, B = 1111 with speed set to 1000 ns - then 
change A to 1 and watch how carry lines change from 0 to 1 in ripple 
fashion.

A3
B3

Cout (overall)
∑ 3

A2
B2 ∑ 2

A1
B1 ∑ 1

A0
B0 ∑ 0
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III.Decoders 

A. A decoder is a circuit that has n inputs and 2n outputs (for some small integer 
n - typically <= 4 with discrete chips).  At any given time, exactly one of the 
outputs is active, as selected by the inputs. 
 
Example: a 1 out of 8 decoder has 3 inputs and 8 outputs.  Based on the 
value of the inputs, exactly one of the outputs is active.

B. Often decoders are built using NAND gates - in which case the selected 
output is 0 and the others are 1.  Sometimes a decoder also has an enable 
input which - if it is not true - means that one of the outputs are selected.

C. DEMONSTRATE: Circuit Sandbox realization - file Decoder - show how 
individual outputs are selected with enable on, and then none selected with 
enable off. 
 

1. ONSTRATE using Circuit Sandbox file Decoder 

2. One place decoders are often used is in memory systems to select a 
specific chip based on particular bits of the address.  We will see 
examples of this much later in the course.

3. A typical decoder circuit, built using NAND gates.  
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a) Note that the selected output is low (0), and the other three outputs are 
high (1).  This is an example of negative logic.  Decoders are typically 
designed this way because a level of inversion is inherent in the typical 
transistor circuits used to implement gates.

b) Devices that are designed to be used with decoders (eg memory chips) 
often have active low enable inputs as a result.

D. A typical application is in specifying which one of a group of similar devices 
is to respond on a particular operation. 

 

Example: A memory system consists of 4 modules. When an operation is 
done on the memory, 2 bits of the address are used to specify which of the 4 
module is to  perform the operation. 

 

00 = module 0 
01 = module 1 
10 = module 2 
11 = module 3 

 

A one out of 4 decoder could process these two bits to select one  
of the 4 modules: 
 

 
 
PROJECT 

module 0
module 1
module 2
module 3

module
select
bits in
address
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IV.Multiplexers

A. A multiplexer (MUX) is - in some sense - the opposite of a decoder.  It 
has n selection inputs and 2n data inputs (for some small integer n - 
typically 2-5), and one output.  It selects one of the 2n data inputs to 
appear on its output, as determined by its n selection inputs. 

B. A multiplexer resembles a decoder, but with data inputs to each of the final 
gates plus a single or gate to pass the selected result through.. 

C. DEMONSTRATE Circuit Sandbox file Multiplexer 
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D. Multiplexers are often used to build data paths in the ALU.

1. A simple example - a 4 bit wide 1 out of 2 multiplexer can be built from 4 
1 out of 2 MUXes 

 

 

DEMO CSB 4 wide 2 MUX

2. One typical application in CPU's arises when a group of bits in an 
instruction is used to select one of several possible registers to provide 
data for an operation. 
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Example: In the Z80, quite a number of instructions use a 3-bit field to  
select one of 8 registers (B, C, D, ...) to provide data.  For example, there 
is a family of 8-bit add instructions that use the value of 3 bits in the 
instruction to determine which register gets added to A: 
 

1 0 0 0 0 r r r - where r r r designates which register to add: 
 

0 0 0 add contents of B 
0 0 1 add contents of C 
0 1 0 add contents of D 
0 1 1 add contents of E 
1 0 0 add contents of H 
1 0 1 add contents of L 
1 1 0 add contents of a memory location 
 

This can be implemented by using one MUX per bit, with the selection 
inputs tied to the appropriate field of the instruction register. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PROJECT
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B0
C0
D0
E0
H0
L0
mem0
A0

to adder input0

B1
C1
D1
E1
H1
L1
mem1
A1

to adder input1

B6
C6
D6
E6
H6
L6
mem6
A6

to adder input6

B7
C7
D7
E7
H7
L7
mem7
A7

to adder input7

• • 
•

register select bits in instruction

(to bits 
 6..2)

(from bits 
 6..2)



E. Another interesting application for a multiplexer is this: any n-input boolean 
function can be realized using an n selection-line MUX. The method is this:

1. The inputs (which we will call A0..An-1) are applied to the selection lines 
of the MUX.

2. Each possible combination of A0..An-1 selects one of the 2n data inputs 
of the MUX and routes it to the output.  We connect the corresponding 
MUX input to 1 if the truth table shows a 1 output for that row, and to 0 if 
it shows a 0 output: 
 
EXAMPLE: Realize the following truth table using a MUX.  (This is the 
same example function we have used in a 
number of places) 
 
A  B  C Y 
 

0  0  0 0 
0  0  1 0 
0  1  0 0 
0  1  1 1 
1  0  0 1 
1  0  1 1 
1  1  0 1 
1  1  1 0 
 
PROJECT 
 
 
Actually, it turns out one can also realize an arbitrary function of n input 
variables using an n-1 selection input 2n-1 data input) MUX plus an 
inverter.  (This is left as an exercise to the student) 
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V. Registers

A. The most visible part of an ISA is the set of registers, as you saw in lab 
working with the Z80.

B. Conceptually, a register is very simple - an n-bit register is just n flip 
flops (often D's) sharing a common clock.  The n D inputs are the input 
value, and the n Q outputs are the output value.   Whenever a clock 
pulse occurs, the input values are loaded into the register and remain 
available on the output until a new value is loaded.

C. However if we use the same clock for multiple registers (as is 
generally the case), we want to be able to select which register(s) 
change on a given clock pulse.  To do that, we might use a MUX with 
each flip flop to enable or disable loading,   In this case, a typical 
register bit would look like this. 

 

DEMONSTRATE - CSB Register bit with enable and clear 
 
The upper switch is the value to load into the register; the lower switch 
is the enable; the first button is the clock and the second is clear.
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D. An n-bit version of this register could be constructed by using n copies 
of this circuit tied to a common clock, enable, and clear enable, with 
each bit having its own input and output.

 
 
If the clock is pulsed when the enable is on, the new data is loaded into 
the register; if the enable is off, each flip flop copies its current value 
back into itself so there is no visible change in the stored value. 
 
DEMO CSB 4 Bit Register 
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VI.Shifters - Cover only some if time is an issue

A. Circuits that perform simple left or right shifts are easy to build.   
 
In fact, they do not need any gates - just wires. 

B. For example, here is a 1 bit left shifter: 

1. DEMO shl.csm

 
Shifting left one place is equivalent to multiplying by 2.

2. It is also possible to build a shifter that shifts left 2 places - equivalent to 
multiplying by 4.

 
DEMO shl2.csm

3. In fact - as we shall see later - whenever hardware needs to multiply by a 
power of 2, it is done by an appropriate shift.  In general, a shift left of n 
places is equivalent to multiplication by 2n.
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4. Note that a left shifter always puts a 0 in the rightmost place(s_, and 
discards the leftmost place(s).

C. It is also possible to build a shifter that shifts right.

1. DEMO shr.csm

 
A shift right of one place is equivalent to dividing an unsigned number by 
2.  Note that, in this case, a 0 is shifted into the rightmost place(s), and the 
leftmost place(s) are dsicarded.

2. When dividing two's-complement signed numbers, it is necessary to 
propagate the sign into the vacated places instead. 
 

 
DEMO ashr.csm 

3. Right shifts that shift a 0 into the leftmost position are called logical 
shifts, while those that propagate the sign are called arithmetic shifts.  
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VII.Conclusion 
 
Strange as it may seem, if you understand things the building blocks we have 
discussed - especially adders, registers, and muxes, as well as implementing 
boolean equations by gate networks, you'll be in great shape to understand how 
a CPU is implemented.  More on this later! 
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